1 Mbit (128K x8) Page-Write EEPROM
GLS29EE010

FEATURES:

- Single Voltage Read and Write Operations
 - 4.5-5.5V for GLS29EE010

- Superior Reliability
 - Endurance: 100,000 Cycles (typical)
 - Greater than 100 years Data Retention

- Low Power Consumption
 - Active Current: 20 mA (typical) for 5V and 10 mA (typical) for 2.7V
 - Standby Current: 10 µA (typical)

- Fast Page-Write Operation
 - 128 Bytes per Page, 1024 Pages
 - Page-Write Cycle: 5 ms (typical)
 - Complete Memory Rewrite: 5 sec (typical)
 - Effective Byte-Write Cycle Time: 39 µs (typical)

- Fast Read Access Time
 - 4.5-5.5V operation: 70 and 90 ns
 - 2.7-3.6V operation: 150 and 200 ns

- Latched Address and Data

- Automatic Write Timing
 - Internal VPP Generation

- End of Write Detection
 - Toggle Bit
 - Data# Polling

- Hardware and Software Data Protection

- Product Identification can be accessed via Software Operation

- TTL I/O Compatibility

- JEDEC Standard
 - Flash EEPROM Pinouts and command sets

- Packages Available
 - 32-lead PLCC
 - 32-lead TSOP (8mm x 14mm, 8mm x 20mm)
 - 32-pin PDIP

- All non-Pb (lead-free) devices are RoHS compliant

PRODUCT DESCRIPTION

The GLS29EE010 is a 128K x8 CMOS Page-Write EEPROMs manufactured with high-performance Super-Flash technology. The split-gate design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The GLS29EE010 write with a single power supply. Internal Erase/Program is transparent to the user. The GLS29EE010 conform to JEDEC standard pinouts for byte-wide memories.

Featuring high performance Page-Write, the GLS29EE010 provides a typical Byte-Write time of 39 µsec. The entire memory, i.e., 128 Kbyte, can be written page-by-page in as little as 5 seconds, when using interface features such as Toggle Bit or Data# Polling to indicate the completion of a Write cycle. To protect against inadvertent write, the GLS29EE010 has on-chip hardware and Software Data Protection schemes. Designed, manufactured, and tested for a wide spectrum of applications, the GLS29EE010 is offered with a guaranteed Page-Write endurance of 10,000 cycles. Data retention is rated at greater than 100 years.

The GLS29EE010 is suited for applications that require convenient and economical updating of program, configuration, or data memory. For all system applications, the GLS29EE010 significantly improves performance and reliability, while lowering power consumption. The GLS29EE010 improves flexibility while lowering the cost for program, data, and configuration storage applications.

To meet high density, surface mount requirements, the GLS29EE010 is offered in 32-lead PLCC and 32-lead TSOP packages. A 600-mil, 32-pin PDIP package is also available. See Figures 2, 3, and 4 for pin assignments.

Device Operation

The Greenliant Page-Write EEPROM offers in-circuit electrical write capability. The GLS29EE010 does not require separate Erase and Program operations. The internally timed Write cycle executes both erase and program transparently to the user. The GLS29EE010 has industry standard optional Software Data Protection, which Greenliant recommends always to be enabled. The GLS29EE010 is compatible with industry standard EEPROM pinouts and functionality.
Data Sheet

Read

The Read operations of the GLS29EE010 is controlled by CE# and OE#, both have to be low for the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either CE# or OE# is high. Refer to the Read cycle timing diagram for further details (Figure 5).

Write

The Page-Write to the GLS29EE010 should always use the JEDEC Standard Software Data Protection (SDP) three-byte command sequence. The GLS29EE010 contains the optional JEDEC approved Software Data Protection scheme. Greenliant recommends that SDP always be enabled, thus, the description of the Write operations will be given using the SDP enabled format. The **three-byte SDP Enable and SDP Write commands are identical; therefore, any time a SDP Write command is issued, Software Data Protection is automatically assured.** The first time the three-byte SDP command is given, the device becomes SDP enabled. Subsequent issuance of the same command bypasses the data protection for the page being written. At the end of the desired Page-Write, the entire device remains protected. For additional descriptions, please see the application notes, *The Proper Use of JEDEC Standard Software Data Protection and Protecting Against Unintentional Writes When Using Single Power Supply Flash Memories.*

The Write operation consists of three steps. Step 1 is the three-byte load sequence for Software Data Protection. Step 2 is the byte-load cycle to a page buffer of the GLS29EE010. Steps 1 and 2 use the same timing for both operations. Step 3 is an internally controlled Write cycle for writing the data loaded in the page buffer into the memory array for nonvolatile storage. During both the SDP three-byte load sequence and the byte-load cycle, the addresses are latched by the falling edge of either CE# or WE#, whichever occurs last. The data is latched by the rising edge of either CE# or WE#, whichever occurs first. The internal Write cycle is initiated by the T_{BLCO} timer after the rising edge of WE# or CE#, whichever occurs first. The Write cycle, once initiated, will continue to completion, typically within 5 ms. See Figures 6 and 7 for WE# and CE# controlled Page-Write cycle timing diagrams and Figures 16 and 18 for flowcharts.

The Write operation has three functional cycles: the Software Data Protection load sequence, the page-load cycle, and the internal Write cycle. The Software Data Protection consists of a specific three-byte load sequence that allows writing to the selected page and will leave the GLS29EE010 protected at the end of the Page-Write. The page-load cycle consists of loading 1 to 128 bytes of data into the page buffer. The internal Write cycle consists of the T_{BLCO} time-out and the write timer operation. During the Write operation, the only valid reads are Data# Polling and Toggle Bit.

The Page-Write operation allows the loading of up to 128 bytes of data into the page buffer of the GLS29EE010 before the initiation of the internal Write cycle. During the internal Write cycle, all the data in the page buffer is written simultaneously into the memory array. Hence, the Page-Write feature of GLS29EE010 allows the entire memory to be written in as little as 5 seconds. During the internal Write cycle, the host is free to perform additional tasks, such as to fetch data from other locations in the system to set up the write to the next page. In each Page-Write operation, all the bytes that are loaded into the page buffer must have the same page address, i.e. A7 through A16. Any byte not loaded with user data will be written to FFH.

See Figures 6 and 7 for the Page-Write cycle timing diagrams. If after the completion of the three-byte SDP load sequence or the initial byte-load cycle, the host loads a second byte into the page buffer within a byte-load cycle time (T_{BLCO}) of 100 µs, the GLS29EE010 will stay in the page-load cycle. Additional bytes are then loaded consecutively. The page-load cycle will be terminated if no additional byte is loaded into the page buffer within 200 µs (T_{BLCO}) from the last byte-load cycle, i.e., no subsequent WE# or CE# high-to-low transition after the last rising edge of WE# or CE#. Data in the page buffer can be changed by a subsequent byte-load cycle. The page-load period can continue indefinitely, as long as the host continues to load the device within the byte-load cycle time of 100 µs. The page to be loaded is determined by the page address of the last byte loaded.

Software Chip-Erase

The GLS29EE010 provides a Chip-Erase operation, which allows the user to simultaneously clear the entire memory array to the “1” state. This is useful when the entire device must be quickly erased.

The Software Chip-Erase operation is initiated by using a specific six-byte load sequence. After the load sequence, the device enters into an internally timed cycle similar to the
Write cycle. During the Erase operation, the only valid read is Toggle Bit. See Table 4 for the load sequence, Figure 11 for timing diagram, and Figure 20 for the flowchart.

Write Operation Status Detection
The GLS29EE010 provides two software means to detect the completion of a Write cycle, in order to optimize the system Write cycle time. The software detection includes two status bits: Data# Polling (DQ7) and Toggle Bit (DQ6). The End-of-Write detection mode is enabled after the rising WE# or CE# whichever occurs first, which initiates the internal Write cycle.

The actual completion of the nonvolatile write is asynchronous with the system; therefore, either a Data# Polling or Toggle Bit read may be simultaneous with the completion of the Write cycle. If this occurs, the system may possibly get an erroneous result, i.e., valid data may appear to conflict with either DQ7 or DQ6. In order to prevent spurious rejection, if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both reads are valid, then the device has completed the Write cycle, otherwise the rejection is valid.

Data# Polling (DQ7)
When the GLS29EE010 is in the internal Write cycle, any attempt to read DQ7 of the last byte loaded during the byte-load cycle will receive the complement of the true data. Once the Write cycle is completed, DQ7 will show true data. Note that even though DQ7 may have valid data immediately following the completion of an internal Write operation, the remaining data outputs may still be invalid: valid data on the entire data bus will appear in subsequent successive Read cycles after an interval of 1 µs. See Figure 8 for Data# Polling timing diagram and Figure 17 for a flowchart.

Toggle Bit (DQ6)
During the internal Write cycle, any consecutive attempts to read DQ6 will produce alternating ‘0’ s and ‘1’ s, i.e. toggling between 0 and 1. When the Write cycle is completed, the toggling will stop. The device is then ready for the next operation. See Figure 9 for Toggle Bit timing diagram and Figure 17 for a flowchart. The initial read of the Toggle Bit will typically be a “1”.

Data Protection
The GLS29EE010 provides both hardware and software features to protect nonvolatile data from inadvertent writes.

Hardware Data Protection
Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a Write cycle.

VDD Power Up/Down Detection: The Write operation is inhibited when VDD is less than 2.5V.

Write Inhibit Mode: Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down. The GLS29EE010 is shipped with the Software Data Protection disabled.

Software Data Protection (SDP)
The GLS29EE010 provides the JEDEC approved optional Software Data Protection scheme for all data alteration operations, i.e., Write and Chip-Erase. With this scheme, any Write operation requires the inclusion of a series of three-byte load operations to precede the data loading operation. The three-byte load sequence is used to initiate the Write cycle, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or power-down. The GLS29EE010 is shipped with the Software Data Protection disabled.

The software protection scheme can be enabled by applying a three-byte sequence to the device, during a page-load cycle (Figures 6 and 7). The device will then be automatically set into the data protect mode. Any subsequent Write operation will require the preceding three-byte sequence. See Table 4 for the specific software command codes and Figures 6 and 7 for the timing diagrams. To set the device into the unprotected mode, a six-byte sequence is required. See Table 4 for the specific codes and Figure 10 for the timing diagram. If a write is attempted while SDP is enabled the device will be in a non-accessible state for ~300 µs. Greenliant recommends Software Data Protection always be enabled. See Figure 18 for flowcharts.

The GLS29EE010 Software Data Protection is a global command, protecting all pages in the entire memory array once enabled. Therefore using SDP for a single Page-Write will enable SDP for the entire array. Single pages by themselves cannot be SDP enabled.

Single power supply reprogrammable nonvolatile memories may be unintentionally altered. Greenliant strongly recommends that Software Data Protection (SDP) always be enabled. The GLS29EE010 should be programmed using the SDP command sequence.
Data Sheet

Please refer to the following Application Notes for more information on using SDP:

- Protecting Against Unintentional Writes When Using Single Power Supply Flash Memories
- The Proper Use of JEDEC Standard Software Data Protection

Product Identification

The Product Identification mode identifies the device as the GLS29EE010 and manufacturer as Greenliant. This mode is accessed via software. For details, see Table 4, Figure 12 for the software ID entry and read timing diagram and Figure 19, for the ID entry command sequence flowchart.

TABLE 1: Product Identification

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000H</td>
<td>BFH</td>
</tr>
<tr>
<td>0001H</td>
<td>07H</td>
</tr>
</tbody>
</table>

Product Identification Mode Exit

In order to return to the standard Read mode, the Software Product Identification mode must be exited. Exiting is accomplished by issuing the Software ID Exit (reset) operation, which returns the device to the Read operation. The Reset operation may also be used to reset the device to the Read mode after an inadvertent transient condition that apparently causes the device to behave abnormally, e.g., not read correctly. See Table 4 for software command codes, Figure 13 for timing waveform, and Figure 19 for a flowchart.

![FIGURE 1: Functional Block Diagram](image-url)
FIGURE 2: Pin Assignments for 32-lead PLCC

FIGURE 3: Pin Assignments for 32-lead TSOP
FIGURE 4: Pin Assignments for 32-pin PDIP
TABLE 2: Pin Description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pin Name</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A16-A7</td>
<td>Row Address Inputs</td>
<td>To provide memory addresses. Row addresses define a page for a Write cycle.</td>
</tr>
<tr>
<td>A6-A0</td>
<td>Column Address Inputs</td>
<td>Column Addresses are toggled to load page data</td>
</tr>
<tr>
<td>DQ7-DQ0</td>
<td>Data Input/output</td>
<td>To output data during Read cycles and receive input data during Write cycles. Data is internally latched during a Write cycle. The outputs are in tri-state when OE# or CE# is high.</td>
</tr>
<tr>
<td>CE#</td>
<td>Chip Enable</td>
<td>To activate the device when CE# is low.</td>
</tr>
<tr>
<td>OE#</td>
<td>Output Enable</td>
<td>To gate the data output buffers.</td>
</tr>
<tr>
<td>WE#</td>
<td>Write Enable</td>
<td>To control the Write operations.</td>
</tr>
<tr>
<td>VDD</td>
<td>Power Supply</td>
<td>To provide: 5.0V supply (4.5-5.5V) for GLS29EE010</td>
</tr>
<tr>
<td>VSS</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>No Connection</td>
<td>Unconnected pins.</td>
</tr>
</tbody>
</table>

TABLE 3: Operation Modes Selection

<table>
<thead>
<tr>
<th>Mode</th>
<th>CE#</th>
<th>OE#</th>
<th>WE#</th>
<th>DQ</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>VIL</td>
<td>VIL</td>
<td>VIL</td>
<td>DOUT</td>
<td>AIN</td>
</tr>
<tr>
<td>Page-Write</td>
<td>VIL</td>
<td>VIL</td>
<td>VIL</td>
<td>DIN</td>
<td>AIN</td>
</tr>
<tr>
<td>Standby</td>
<td>VIL</td>
<td>VIL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Write Inhibit</td>
<td>VIL</td>
<td>VIL</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Software Chip-Erase</td>
<td>VIL</td>
<td>VIL</td>
<td>VIL</td>
<td>DOUT</td>
<td>AIN, See Table 4</td>
</tr>
<tr>
<td>Product Identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Mode</td>
<td>VIL</td>
<td>VIL</td>
<td>VIL</td>
<td>Manufacturer’s ID (BFH)</td>
<td>See Table 4</td>
</tr>
<tr>
<td>SDP Enable Mode</td>
<td>VIL</td>
<td>VIL</td>
<td>VIL</td>
<td>See Table 4</td>
<td></td>
</tr>
<tr>
<td>SDP Disable Mode</td>
<td>VIL</td>
<td>VIL</td>
<td>VIL</td>
<td>See Table 4</td>
<td></td>
</tr>
</tbody>
</table>

1. X can be VIL or VIL, but no other value.
2. Device ID = 07H for GLS29EE010
TABLE 4: Software Command Sequence

<table>
<thead>
<tr>
<th>Command Sequence</th>
<th>1st Bus Write Cycle</th>
<th>2nd Bus Write Cycle</th>
<th>3rd Bus Write Cycle</th>
<th>4th Bus Write Cycle</th>
<th>5th Bus Write Cycle</th>
<th>6th Bus Write Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Addr(^1)</td>
<td>Data</td>
<td>Addr(^1)</td>
<td>Data</td>
<td>Addr(^1)</td>
<td>Data</td>
</tr>
<tr>
<td>Software Data Protect Enable & Page-Write</td>
<td>5555H</td>
<td>AAH</td>
<td>2AAAH</td>
<td>55H</td>
<td>5555H</td>
<td>A0H</td>
</tr>
<tr>
<td>Software Chip-Erase(^3)</td>
<td>5555H</td>
<td>AAH</td>
<td>2AAAH</td>
<td>55H</td>
<td>5555H</td>
<td>80H</td>
</tr>
<tr>
<td>Software ID Entry(^4,5)</td>
<td>5555H</td>
<td>AAH</td>
<td>2AAAH</td>
<td>55H</td>
<td>5555H</td>
<td>90H</td>
</tr>
<tr>
<td>Software ID Exit</td>
<td>5555H</td>
<td>AAH</td>
<td>2AAAH</td>
<td>55H</td>
<td>5555H</td>
<td>F0H</td>
</tr>
<tr>
<td>Alternate Software ID Entry(^6)</td>
<td>5555H</td>
<td>AAH</td>
<td>2AAAH</td>
<td>55H</td>
<td>5555H</td>
<td>80H</td>
</tr>
</tbody>
</table>

1. Address format A\(_{14-16}\) (Hex), Addresses A\(_{15}\) and A\(_{16}\) can be V\(_{IL}\) or V\(_{IH}\), but no other value.
2. Page-Write consists of loading up to 128 Bytes (A\(_{6-4}\)).
3. The software Chip-Erase function is not supported by the industrial temperature part.
 Please contact Greenliant if you require this function for an industrial temperature part.
4. The device does not remain in Software Product ID mode if powered down.
5. With A\(_{14-1}\) = 0; Greenliant Manufacturer’s ID = BFH, is read with A\(_{0}\) = 0,
 GLS29EE010 Device ID = 07H, is read with A\(_{0}\) = 1
6. Alternate six-byte Software Product ID command code

Note: This product supports both the JEDEC standard three-byte command code sequence and Greenliant’s original six-byte command code sequence. For new designs, Greenliant recommends that the three-byte command code sequence be used.
Absolute Maximum Stress Ratings (Applied conditions greater than those listed under “Absolute Maximum Stress Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias .. -55°C to +125°C
Storage Temperature .. 0°C to +150°C
D. C. Voltage on Any Pin to Ground Potential -0.5V to VDD+0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential -2.0V to VDD+2.0V
Voltage on A9 Pin to Ground Potential -0.5V to 14.0V
Package Power Dissipation Capability (TA = 25°C) 1.0W
Through Hole Lead Soldering Temperature (10 Seconds) 300°C
Surface Mount Solder Reflow Temperature1 260°C for 10 seconds
Output Short Circuit Current2 ... 100 mA

1. Excluding certain with-Pb 32-PLCC units, all packages are 260°C capable in both non-Pb and with-Pb solder versions. Certain with-Pb 32-PLCC package types are capable of 240°C for 10 seconds; please consult the factory for the latest information.
2. Outputs shorted for no more than one second. No more than one output shorted at a time.

Operating Range for GLS29EE010

<table>
<thead>
<tr>
<th>Range</th>
<th>Ambient Temp</th>
<th>VDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>0°C to +70°C</td>
<td>4.5-5.5V</td>
</tr>
<tr>
<td>Industrial</td>
<td>-40°C to +85°C</td>
<td>4.5-5.5V</td>
</tr>
</tbody>
</table>

AC Conditions of Test

Input Rise/Fall Time 10 ns
Output Load 1 TTL Gate and CL = 100 pF
See Figures 14 and 15

TABLE 5: DC Operating Characteristics VDD = 4.5-5.5V for GLS29EE010

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Limits</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IODD</td>
<td>Power Supply Current</td>
<td></td>
<td>Address input=VILT/VIHT, at f=1/TRC Min, VDD=VDD Max</td>
</tr>
<tr>
<td></td>
<td>Read</td>
<td>Min</td>
<td>mA CE#=OE#=VIL, WE#=VIH, all I/Os open</td>
</tr>
<tr>
<td></td>
<td>Program and Erase</td>
<td>Max</td>
<td>mA CE#=WE#=VIL, OE#=VIH, VDD=VDD Max</td>
</tr>
<tr>
<td>ISB1</td>
<td>Standby VDD Current</td>
<td></td>
<td>CE#=OE#=WE#=VIL, VDD=VDD Max</td>
</tr>
<tr>
<td></td>
<td>(TTL input)</td>
<td>Min</td>
<td>mA CE#=OE#=WE#=VIL, VDD=VDD Max</td>
</tr>
<tr>
<td>ISB2</td>
<td>Standby VDD Current</td>
<td></td>
<td>CE#=OE#=WE#=VDD-0.3V, VDD=VDD Max</td>
</tr>
<tr>
<td></td>
<td>(CMOS input)</td>
<td>Max</td>
<td>μA CE#=OE#=WE#=VDD Max</td>
</tr>
<tr>
<td>IIL</td>
<td>Input Leakage Current</td>
<td>1</td>
<td>μA VIN =GND to VDD, VDD=VDD Max</td>
</tr>
<tr>
<td>ILO</td>
<td>Output Leakage Current</td>
<td>10</td>
<td>μA VOUT =GND to VDD, VDD=VDD Max</td>
</tr>
<tr>
<td>VIL</td>
<td>Input Low Voltage</td>
<td>0.8</td>
<td>V VDD=VDD Min</td>
</tr>
<tr>
<td>VIH</td>
<td>Input High Voltage</td>
<td>2.0</td>
<td>V VDD=VDD Max</td>
</tr>
<tr>
<td>VOL</td>
<td>Output Low Voltage</td>
<td>0.4</td>
<td>V IOL=2.1 mA, VDD=VDD Min</td>
</tr>
<tr>
<td>VOH</td>
<td>Output High Voltage</td>
<td>2.4</td>
<td>V IOH=-400 μA, VDD=VDD Min</td>
</tr>
</tbody>
</table>
TABLE 5: DC Operating Characteristics $V_{DD} = 4.5$-5.5V for GLS29EE010

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Limits</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6: Recommended System Power-up Timings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{PU-READ}$</td>
<td>Power-up to Read Operation</td>
<td>100</td>
<td>µs</td>
</tr>
<tr>
<td>$T_{PU-WRITE}$</td>
<td>Power-up to Write Operation</td>
<td>5</td>
<td>ms</td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

TABLE 7: Capacitance ($T_A = 25°C$, f=1 Mhz, other pins open)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Test Condition</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{I/O}$</td>
<td>I/O Pin Capacitance</td>
<td>$V_{I/O} = 0V$</td>
<td>12 pF</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td>$V_{IN} = 0V$</td>
<td>6 pF</td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

TABLE 8: Reliability Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum Specification</th>
<th>Units</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{END}</td>
<td>Endurance</td>
<td>10,000</td>
<td>Cycles</td>
<td>JEDEC Standard A117</td>
</tr>
<tr>
<td>T_{DR}</td>
<td>Data Retention</td>
<td>100</td>
<td>Years</td>
<td>JEDEC Standard A103</td>
</tr>
<tr>
<td>I_{LTH}</td>
<td>Latch Up</td>
<td>100</td>
<td>mA</td>
<td>JEDEC Standard 78</td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
AC CHARACTERISTICS

TABLE 9: Read Cycle Timing Parameters for GLS29EE010

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>GLS29EE010-70</th>
<th>GLS29EE010-90</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRC</td>
<td>Read Cycle Time</td>
<td>70</td>
<td>90</td>
<td>ns</td>
</tr>
<tr>
<td>TCE</td>
<td>Chip Enable Access Time</td>
<td>70</td>
<td>90</td>
<td>ns</td>
</tr>
<tr>
<td>TAA</td>
<td>Address Access Time</td>
<td>70</td>
<td>90</td>
<td>ns</td>
</tr>
<tr>
<td>TOE</td>
<td>Output Enable Access Time</td>
<td>30</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>TCLZ</td>
<td>CE# Low to Active Output</td>
<td>0</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>TOLZ</td>
<td>OE# Low to Active Output</td>
<td>0</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>TCHZ</td>
<td>CE# High to High-Z Output</td>
<td>20</td>
<td>30</td>
<td>ns</td>
</tr>
<tr>
<td>TOHZ</td>
<td>OE# High to High-Z Output</td>
<td>20</td>
<td>30</td>
<td>ns</td>
</tr>
<tr>
<td>TOH</td>
<td>Output Hold from Address Change</td>
<td>0</td>
<td>0</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

TABLE 10: Page-Write Cycle Timing Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>GLS29EE010</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWC</td>
<td>Write Cycle (Erase and Program)</td>
<td>10</td>
<td>ms</td>
</tr>
<tr>
<td>TAS</td>
<td>Address Setup Time</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>TAH</td>
<td>Address Hold Time</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>TCS</td>
<td>WE# and CE# Setup Time</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>TCH</td>
<td>WE# and CE# Hold Time</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>TOES</td>
<td>OE# High Setup Time</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>TOEH</td>
<td>OE# High Hold Time</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>TCP</td>
<td>CE# Pulse Width</td>
<td>70</td>
<td>ns</td>
</tr>
<tr>
<td>TWP</td>
<td>WE# Pulse Width</td>
<td>70</td>
<td>ns</td>
</tr>
<tr>
<td>TDS</td>
<td>Data Setup Time</td>
<td>35</td>
<td>ns</td>
</tr>
<tr>
<td>TDH</td>
<td>Data Hold Time</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>TBLC</td>
<td>Byte Load Cycle Time</td>
<td>0.05</td>
<td>100 µs</td>
</tr>
<tr>
<td>TBLCO</td>
<td>Byte Load Cycle Time</td>
<td>200</td>
<td>µs</td>
</tr>
<tr>
<td>TIDA</td>
<td>Software ID Access and Exit Time</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td>TSCE</td>
<td>Software Chip-Erase</td>
<td>20</td>
<td>ms</td>
</tr>
</tbody>
</table>

1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.
FIGURE 5: Read Cycle Timing Diagram

FIGURE 6: WE# Controlled Page-Write Cycle Timing Diagram
FIGURE 7: CE# Controlled Page-Write Cycle Timing Diagram

FIGURE 8: Data# Polling Timing Diagram
FIGURE 9: Toggle Bit Timing Diagram

FIGURE 10: Software Data Protect Disable Timing Diagram
FIGURE 11: Software Chip-Erase Timing Diagram

FIGURE 12: Software ID Entry and Read
FIGURE 13: Software ID Exit and Reset
AC test inputs are driven at V_{IH} (2.4V) for a logic “1” and V_{IL} (0.4 V) for a logic “0”. Measurement reference points for inputs and outputs are V_{HT} (2.0 V) and V_{LT} (0.8 V). Input rise and fall times (10% ↔ 90%) are <10 ns.

Note:
- V_{HT} - V_{HIGH} Test
- V_{LT} - V_{LOW} Test
- V_{IH} - V_{INPUT} HIGH Test
- V_{IL} - V_{INPUT} LOW Test

FIGURE 14: AC Input/Output Reference Waveforms

FIGURE 15: A Test Load Example
See Figure 18

Start

Software Data Protect Write Command

Set Page Address

Set Byte Address = 0

Load Byte Data

Increment Byte Address By 1

Yes

Wait TBLCO

No

Byte Address = 128?

Wait for end of Write (TWC, Data# Polling bit or Toggle bit operation)

Write Completed
FIGURE 16: Write Algorithm

FIGURE 17: Wait Options
Software Data Protect Enable Command Sequence

- Write data: AAH
 Address: 5555H

- Write data: 55H
 Address: 2AAAH

- Write data: A0H
 Address: 5555H

- Load 0 to 128 Bytes of page data

- Wait TBLCO

- Wait TWC

- SDP Enabled

Optional Page Load Operation

Software Data Protect Disable Command Sequence

- Write data: AAH
 Address: 5555H

- Write data: 55H
 Address: 2AAAH

- Write data: 80H
 Address: 5555H

- Write data: AAH
 Address: 5555H

- Wait TBLCO

- Wait TWC

- SDP Disabled
FIGURE 18: Software Data Protection Flowcharts

Software Product ID Entry Command Sequence

1. Write data: AAH
 Address: 5555H

2. Write data: 55H
 Address: 2AAAH

3. Write data: 90H
 Address: 5555H

4. Pause 10 µs

5. Read Software ID

Software Product ID Exit & Reset Command Sequence

1. Write data: AAH
 Address: 5555H

2. Write data: 55H
 Address: 2AAAH

3. Write data: F0H
 Address: 5555H

4. Pause 10 µs

5. Return to normal operation

FIGURE 19: Software Product Command Flowcharts
FIGURE 20: Software Chip-Erase Command Codes

Software Chip-Erase Command Sequence

1. Write data: AAH
 Address: 5555H

2. Write data: 55H
 Address: 2AAAAH

3. Write data: 80H
 Address: 5555H

4. Write data: AAH
 Address: 5555H

5. Write data: 55H
 Address: 2AAAAH

6. Write data: 10H
 Address: 5555H

7. Wait TSCE

8. Chip-Erase to FFH
PRODUCT ORDERING INFORMATION

<table>
<thead>
<tr>
<th>GLS</th>
<th>29</th>
<th>xE</th>
<th>010</th>
<th>-</th>
<th>70</th>
<th>-</th>
<th>4C</th>
<th>-</th>
<th>NH</th>
<th>-</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX</td>
<td>XX</td>
<td>XXXX</td>
<td>XXX</td>
<td>-</td>
<td>XXX</td>
<td>-</td>
<td>XX</td>
<td>-</td>
<td>XXX</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

- **Environmental Attribute**
 - E¹ = non-Pb
- **Package Modifier**
 - H = 32 leads or pins
- **Package Type**
 - N = PLCC
 - E = TSOP (type 1, die up, 8mm x 20mm)
 - P = PDIP
 - W = TSOP (type 1, die up, 8mm x 14mm)
- **Temperature Range**
 - C = Commercial = 0°C to +70°C
 - I = Industrial = -40°C to +85°C
- **Minimum Endurance**
 - 4 = 10,000 cycles
- **Read Access Speed**
 - 200 = 200 ns
 - 150 = 150 ns
 - 90 = 90 ns
 - 70 = 70 ns
- **Device Density**
 - 010 = 1 Mbit
- **Function**
 - E = Page-Write
- **Voltage**
 - E = 4.5-5.5V
 - V = 2.7-3.6V
- **Product Series**
 - 29 = Page-Write Flash

¹. Environmental suffix “E” denotes non-Pb solder. Greenliant non-Pb solder devices are “RoHS Compliant.”

Valid combinations for GLS29EE010

- GLS29EE010-70-4C-NHE
- GLS29EE010-70-4C-WHE
- GLS29EE010-70-4C-EHE
- GLS29EE010-70-4C-PHE
- GLS29EE010-90-4C-NHE
- GLS29EE010-90-4C-WHE
- GLS29EE010-90-4C-EHE
- GLS29EE010-70-4I-NHE
- GLS29EE010-70-4I-WHE
- GLS29EE010-70-4I-EHE

Note: Valid combinations are those products in mass production or will be in mass production. Consult your Greenliant sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Note: The software Chip-Erase function is not supported by the industrial temperature part. Please contact Greenliant if this function is required in an industrial temperature part.
FIGURE 21: 32-lead Plastic Lead Chip Carrier (PLCC)
Greenliant Package Code: NH

Note: 1. Complies with JEDEC publication 95 MS-016 AE dimensions, although some dimensions may be more stringent.
2. All linear dimensions are in inches (max/min).
3. Dimensions do not include mold flash. Maximum allowable mold flash is .008 inches.
1 Mbit Page-Write EEPROM
GLS29EE010

FIGURE 22: 32-lead Thin Small Outline Package (TSOP) 8mm x 14mm
Greenliant Package Code: WH

Note: 1. Complies with JEDEC publication 95 MO-142 BA dimensions, although some dimensions may be more stringent.
2. All linear dimensions are in millimeters (max/min).
3. Coplanarity: 0.1 mm
4. Maximum allowable mold flash is 0.15 mm at the package ends, and 0.25 mm between leads.
FIGURE 23: 32-lead Thin Small Outline Package (TSOP) 8mm x 20mm
Greenliant Package Code: EH

Note: 1. Complies with JEDEC publication 95 MO-142 BD dimensions, although some dimensions may be more stringent.
2. All linear dimensions are in millimeters (max/min).
3. Coplanarity: 0.1 mm
4. Maximum allowable mold flash is 0.15 mm at the package ends, and 0.25 mm between leads.
FIGURE 24: 32-pin Plastic Dual In-line Pins (PDIP)
Greenliant Package Code: PH

Note: 1. Complies with JEDEC publication 95 MO-015 AP dimensions, although some dimensions may be more stringent.
2. All linear dimensions are in inches (max/min).
3. Dimensions do not include mold flash. Maximum allowable mold flash is .010 inches.
TABLE 11: Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>07</td>
<td>• 2002 Data Book</td>
<td>May 2002</td>
</tr>
<tr>
<td>08</td>
<td>• Removed 200 ns Read Access Time for SST29LE010</td>
<td>Mar 2003</td>
</tr>
<tr>
<td></td>
<td>• Clarified I_{DD} Write to be Program and Erase in Tables 5 and 6 on page 9</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>• 2004 Data Book</td>
<td>Nov 2003</td>
</tr>
<tr>
<td></td>
<td>• Added non-Pb MPNs and removed footnote (See page 23)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>• Added 150 ns MPNs for SST29VE010</td>
<td>Mar 2004</td>
</tr>
<tr>
<td>11</td>
<td>• Removed 3V device and associated MPNs: refer to EOL Product Data Sheet S71061(01)</td>
<td>Sep 2005</td>
</tr>
<tr>
<td></td>
<td>• Added non-Pb MPN for SST29EE010 PDIP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Added RoHS compliance information on page 1 and in the “Product Ordering Information” on page 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Updated the solder reflow temperature to the “Absolute Maximum Stress Ratings” on page 9.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>• Updated “Valid combinations for SST29EE010” and “Valid combinations for SST29VE010” on page 25 to remove unused parts.</td>
<td>May 2008</td>
</tr>
<tr>
<td></td>
<td>• EOL’d all Pb devices: refer to EOL Data Sheet S71601(03).</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>• End of Life all SST29VE010 valid combinations. See S71601(04).</td>
<td>Mar 2009</td>
</tr>
<tr>
<td>14</td>
<td>• Added SST29EE010-70-4I-EHE to valid combinations.</td>
<td>Jun 2010</td>
</tr>
<tr>
<td></td>
<td>• Updated address information.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>• Transferred from SST to Greenliant</td>
<td>May 2010</td>
</tr>
</tbody>
</table>